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ABSTRACT

A method for detecting and cleansing suspect building auto-
mation system data is shown and described. The method
includes using processing electronics to automatically deter-

mine

which of a plurality of error detectors and which of a

plurality of data cleansers to use with building automation
system data. The method further includes using processing
electronics to automatically detect errors in the data and
cleanse the data using a subset of the error detectors and a
subset of the cleansers.
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SYSTEMS AND METHODS FOR DATA
QUALITY CONTROL AND CLEANSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of and priority to
U.S. Provisional Application No. 61/542,101, filed Sep. 30,
2011, the entire contents of which are hereby incorporated by
reference.

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under
DE-EE0003841 awarded by the Department of Energy. The
government has certain rights in the invention.

BACKGROUND

The present application relates to systems and methods for
data detection and data cleansing. The systems and methods
described herein may be used with building automation sys-
tems such as those used or sold by Johnson Controls, Inc.

SUMMARY

One embodiment of the invention relates to a method for
detecting and cleansing suspect building automation system
data. The method includes using processing electronics to
automatically determine which of a plurality of error detec-
tors and which of a plurality of data cleansers to use with
building automation system data. The method further
includes using processing electronics to automatically detect
errors in the data and cleanse the data using a subset of the
error detectors and a subset of the cleansers.

In some embodiments, the processing electronics use
information concerning data type to determine which of the
error detectors or which of the data cleansers to use with the
data.

In some embodiments, the processing electronics use
information concerning how the data will be used to deter-
mine which of the error detectors or which of the data cleans-
ers to use with the data.

In some embodiments, the processing electronics use
information concerning which of the error detectors is used
with the data or the type of error determined by the detectors
to determine which of the data cleansers to use with the data.

In some embodiments, the plurality of cleansers comprise
at least two cleansers chosen from the group consisting of a
module that replaces the suspect data with a not-a-number
value, a module that replaces the suspect data with a value
determined by interpolation, a module that formats the data to
a uniform format, and a module that sorts the data.

In some embodiments, the plurality of error detectors com-
prise at least three detectors chosen from the group consisting
of a static bounds error detector, an adaptive bounds error
detector, a static derivative bounds error detector an adaptive
derivative bounds error detector, and a stuck value error
detector.

In some embodiments, the static bounds error detector uses
a process comprising receiving a data point having a data
value, receiving a minimum and maximum bound informa-
tion, and flagging the data point as suspect data if the data
value is not within the minimum and maximum bounds.

In some embodiments, the adaptive bounds error detector
uses a process comprising receiving a critical value and a data
window having a window size, receiving data points until the
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number of data points collected equals the window size, esti-
mating a data spread and a central tendency for the data points
in the current data window, receiving a next data point having
a data value, and flagging the next data point as suspect data
if the absolute value of the difference between the data value
and the central tendency is greater than the product of the
critical value and the data spread.

In some embodiments, the static derivative bounds error
detector uses a process comprising receiving a critical deriva-
tive, an initial data point and a next data point, each data point
having a data value and a data timestamp, determining a rate
of change in data value between the initial data point and the
next data point, and flagging the next data point as suspect
data if the rate of change is greater than the critical derivative.

In some embodiments, the adaptive derivative bounds error
detector uses a process comprising receiving a critical deriva-
tive and a growth function, collecting an initial data point
having an initial data value and an initial data timestamp and
a next data point having a next data value and a next data
timestamp, determining a rate of change in data value
between the data points by dividing the difference in data
values by the difference in data timestamps, flagging the next
data point as suspect data if the absolute value of the rate of
change in data value between the data points is greater than
the critical derivative, and using the growth function to either
(a) increase the critical derivative if the absolute value of the
rate of change in data value between the data points is greater
than the critical derivative, or (b) decrease the critical deriva-
tive if the absolute value of the rate of change in data value
between the data points is less than or equal to the critical
derivative.

In some embodiments, the stuck value error detector uses a
process comprising receiving a maximum false alarm rate and
a plurality of data points, each data point having a data value
and a data timestamp, determining an average time between
changes in data value, determining a first critical time based
on the average time between changes and the maximum false
alarm rate, receiving a next data point having a next data value
and a next data timestamp, and flagging the next data point as
stuck if the difference between the next data timestamp and
the timestamp of the most recent previous data point with a
data value different from the next data value is greater than the
first critical time.

In some embodiments, the stuck value error detector uses a
process further comprising determining a current noise esti-
mate and using the current noise estimate to calculate a noise
band, determining an average time between deviations from
the noise band, determining a second critical time based on
the average time between deviations from the noise band and
the maximum false alarm rate, and flagging the next data
point as stuck if the difference between the next data times-
tamp and the timestamp of the most recent previous data point
with a data value significantly different from the next data
value is greater than the second critical time, wherein a dif-
ference in data value between two data points is deemed
significantly different if the difference represents a deviation
from the noise band.

Some embodiments relate to a method for detecting and
cleansing suspect building automation system data using one
or more of a plurality of suspect data detectors and data
cleansers. Suspect data detectors include a static bounds error
detector, a derivative bounds error detector, an adaptive
bounds error detector, an adaptive derivative bounds error
detector, and a stuck data detector. Data cleansers include
modules that replace the suspect data with a not-a-number
value, replace the suspect data with an interpolated value,
format the data to a uniform format, and sort the data. Pro-
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cesses used by the various suspect data detectors include
determining a current noise estimate, determining an average
time between changes in data value, and determining an aver-
age time between deviations from a noise band.

Alternative exemplary embodiments relate to other fea-
tures and combinations of features as may be generally
recited by the claims.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an exemplary embodiment of a data system
containing a communications interface, a processing circuit,
and memory containing a suspect data detection module com-
prising a plurality of suspect data detectors and a data cleans-
ing module comprising a plurality of data cleansers.

FIG. 2 is a flowchart showing an exemplary embodiment of
an adaptive bounds error detection process.

FIG. 3 is a flowchart showing an exemplary embodiment of
an adaptive derivative bounds error detection process.

FIG. 4 is a flowchart showing an exemplary embodiment of
a stuck data detection process.

FIG. 5 is a flowchart showing an exemplary embodiment of
a sub-process which can be used in either the static bounds
error detection process or the adaptive bounds error detection
process to compare the value of a data point against minimum
and maximum bound information.

FIG. 6 is a flowchart showing an exemplary embodiment of
the process used by the growth function to increase or
decrease the critical derivative in an adaptive bounds error
detection process, such as the process of FIG. 3.

FIG. 7 is a flowchart showing an exemplary embodiment of
the process used to calculate the first and second critical times
in a stuck data detection process, such as the process of FIG.
4.

FIG. 8 is a flowchart showing an exemplary embodiment of
a process to generate the count information used by the pro-
cess of FIG. 7 to determine the first and second critical times.

FIG. 9 is a flowchart showing an exemplary embodiment of
a process used to compute the current noise estimate used by
the process of FIG. 7 to determine the second critical time.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Referring generally to the figures, systems and methods for
data detection and data cleansing in a building automation
system are shown. The systems and methods of the present
disclosure may be used to receive data, detect data suspected
to be bad data, and cleanse the data (e.g., removing or replac-
ing suspect data points). One or more sub-processes may be
used to detect suspect data (e.g., using static bounds, static
derivative bounds, adaptive bounds, adaptive derivative
bounds, stuck data detection, etc.). The sub-processes used
for the detection and the cleansing can vary based on the type
of data, the type of detected error, and/or the use for the data
(e.g., whether the data is for a measurement and verification
(M&V) algorithm or a demand response (DR) algorithm).

A building automation system (i.e., building management
system) may be or include any system capable of automating
the processes of a building. Building automation systems
include heating systems, ventilation systems, cooling or air
conditioning systems, water systems, power or electrical sys-
tems, security systems, audio or video systems, computer
data or networking systems, or any other system capable of
implementation in a building.

Referring to FIG. 1, a block diagram of a data system 100
is shown, according to an exemplary embodiment. The data
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4

system 100 is configured to receive data from a building
automation system (BAS) database 102 or another source and
to identify suspect data. The data system 100 then corrects or
removes the suspect data and provides the data to a BAS
database 102, BAS computer system, a module thereof (e.g.,
a fault detection and diagnostics module, an M&V module,
etc.), or another system. Advantageously, which detectors are
used (by suspect data detection module 120) can vary based
on the type of raw data being received. Which detectors are
used can also vary based on the downstream algorithm calling
for the data or with which the data will be used (e.g., M&V,
DR, etc.). Further, the cleansers (in data cleansing module
140) that correct or remove the suspect data can adapt to the
type of error determined by the detectors. Yet further, one or
more of the detectors may dynamically adapt itself (e.g.,
adapt a threshold) based on statistical processing of the data.
The detectors and cleansers described herein can therefore
automatically adapt to varying types of raw data that may be
supplied by building automation systems 102 having dispar-
ate equipment and/or data of varying quality.

The data system 100 shown in FIG. 1 includes a commu-
nications interface 104. The communications interface 104
may include wired or wireless interfaces (e.g., jacks, anten-
nas, transmitters, receivers, transceivers, wire terminals, Eth-
ernet ports, WiF] transceivers, etc.) for conducting data com-
munications with local or remote devices or systems.

As shown in FIG. 1, BAS database 102 may be located
within the data system 100. Data system 100 and BAS data-
base 102 may be implemented in one or more of a variety of
logical locations with respect to the other components of a
BAS. Data system 100 may be located in a “cloud”-based
system whereby the data within BAS database 102 is received
from disparate BAS data sources located at particular build-
ing sites while data system 100 is implemented in a cloud
system. In other embodiments, data system 100 may be local
to a single building automation system. In such embodiments,
data system 100 may be located within a METASYS® Appli-
cation Data Server, Network Automation Engine, or other
workstation or server local to the building automation system.
In yet other embodiments, data system 100 may be dispar-
ately located or dispersed among local computing devices and
remote computing devices. For example, a lower level system
may include and conduct some of the suspect data detection
while a higher level system may include and conduct the
remainder and the data cleaning activities. It should be appre-
ciated that in some embodiments each module of data system
100 is a part of the same device. In other embodiments the
various modules of data system 100 may be parts of different
devices or servers. It should also be appreciated that the
modules of data system 100 may be located at the same or
different levels of a network topology. Therefore, while data
system 100 shown in FIG. 1A is shown as existing within a
single device, it should be appreciated that the claims are not
limited to implementation within one device, unless
expressly required by the claim language.

The data system 100 of FIG. 1 is further shown to include
a processing circuit 106 including a processor 108 and
memory 110. The processor 108 can be implemented as a
general purpose processor, an application specific integrated
circuit (ASIC), one or more field programmable gate arrays
(FPGAs), a CPU, a GPU, a group of processing components,
or other suitable electronic processing components. The
memory 110 includes one or more devices (e.g., RAM, ROM,
Flash memory, hard disk storage, etc.) for storing data and/or
computer code for completing and/or facilitating the various
processes, layers, and modules described in the present dis-
closure. Memory 110 may comprise volatile memory or non-
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volatile memory. Memory 110 may include database compo-
nents, object code components, script components, or any
other type of information structure for supporting the various
activities and information structures described in the present
disclosure. According to an exemplary embodiment, the
memory 110 is communicably connected to the processor
108 via the processing circuit 106 and includes computer
code (e.g., via the modules stored in memory) for executing
(e.g., by the processing circuit 106 and processor 108) one or
more processes described herein.

The memory 110 of the data system 100 shown in FIG. 1
includes modules 120, 140 for completing the processes
described herein. For example, the memory 110 is shown to
include a suspect data detection module 120 and a data
cleansing module 140. The suspect data detection module
120 is configured to receive data from BAS database 102
(e.g., data points, name/value pairs, time/value pairs, single
values, a data set, raw data) and to determine whether the data
should be marked as suspect. It should be noted that BAS
database 102 may be stored within memory 110 or external
from memory 110 (e.g., as shown, stored in a RAID array,
stored in the cloud, stored in a downstream BAS server, etc.).

Suspect data detection may include, for example, deter-
mining whether the data is in the correct format, whether the
data is or includes a statistical outlier, whether the data is
distorted or “not a number” (NaN), whether the data is statis-
tically reliable, whether the data is within statistical bounds,
or whether the data is associated with a certain behavior (e.g.,
a stuck damper). While a set of detectors 122-130 is shown in
FIG. 1, in other embodiments more, fewer, or different detec-
tors may form a part of suspect data detection module 120.
The data cleansing module 140 is configured to receive iden-
tifications of suspect data from the suspect data detection
module 120. The data cleansing module 140 may receive an
identification of the detector 122-130 that identified the sus-
pect data and/or other information describing the suspect data
or its source. The data cleansing module 140 uses such iden-
tifications and information to remove, change, or otherwise
fix the suspect data in the data collection.

Once raw data is cleansed, the data cleansing module 140
may provide the data to other modules of the processing
circuit 106, provide the cleansed data outside of the data
system 100 via the communications interface 104, store the
cleansed data back in the BAS database 102, push the
cleansed data to a cloud system, push the cleansed data back
to particular BAS or subsystem, or otherwise use the cleansed
datain BAS operations (e.g., in a fault detection and diagnos-
tics algorithm, in a measurement & verification algorithm,
etc.).

The suspect data detection module 120 illustrated in FIG. 1
is shown to include modules 122-130 for detecting suspect
data. In the exemplary embodiment, the suspect data detec-
tion module 120 includes a static bounds detector 122. The
static bounds detector 122 compares received data to static
bounds (e.g., user established or otherwise, a preselected
lower bound and an upper bound). The static bounds may
relate to a known threshold for which a data point should not
or cannot properly be above or below at a given time and/or
for a given type of data. The data points in a data set are
compared to the static bounds and if a data points falls outside
of the range defined by the static bounds, the data point is
marked as suspect data.

The suspect data detection module 120 may further include
a static derivative bounds detector 124. The static derivative
bounds detector 124 determines the rate of change in data
values between two or more data points in a data set and
compares the measured rate of change to one or more static
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bounds or threshold. The measured rate of change may be
based on two consecutive data points, two non-consecutive
data points, or an average rate of change over multiple data
points. If the rate of change falls outside the bounds (e.g., the
rate of change is greater than the upper bound or less than the
lower bound), then one of more of the data points used to
calculate the rate of change is marked as suspect data. In this
way, the static derivative bounds detector 124 may function as
a “spike filter.”” A user may configure whether both the first
and second data point should be marked as suspect data,
whether only the first data point should be marked as suspect
data, or whether only the second data point should be marked
as suspect data. In some embodiments the static derivative
bounds detector 124 can select which of two or more points to
mark as suspect data. For example, if the change between two
data points exceed a threshold, the detector 124 may evaluate
which of the two data points is most dissimilar to previous and
subsequent data. The most dissimilar point may be the point
marked as suspect data.

The suspect data detection module 120 may further include
an adaptive bounds detector 126. The adaptive bounds detec-
tor 126 determines bounds (e.g., a lower bound and an upper
bound) for a data set by adaptively or dynamically calculating
or determining a critical value for the data set. The critical
value is then used to adaptively or dynamically set bounds
(e.g., a range) within which the data points (e.g., of the set,
next data points, etc.) should fall. The data points in a data set
are compared to the bounds, and if a data point falls outside of
the range defined by the bounds, the data point is marked as
suspect data. The process of using adaptive bounds to detect
suspect data is described in greater detail in reference to FIG.
2.

The suspect data detection module 120 may further include
an adaptive derivative bounds detector 128. The adaptive
derivative bounds detector 128 determines one or more
dynamic boundaries for the rate of change between two or
more data points in a data set. A growth function may be used
by the adaptive derivative bounds detector to adjust the
dynamic boundaries in response to statistical changes (e.g.,
growth in the data due to a very warm day, etc.) of the under-
lying raw data. While a static derivative bounds detector 124
may be reasonably accurate when the maximum rate of
change that is physically possible is known, the adaptive
derivative detector 128 may better detect suspect or anoma-
lous data by adaptively raising the thresholds when statistical
processing indicates relatively rare or noisy raw data. In the
exemplary embodiment, a rate of change between data points
is calculated and compared to dynamically selected bounds.
If the rate of change falls outside of the bounds (e.g., the rate
of change is greater than an adaptively calculated critical
derivative value), the data is marked as suspect data. In this
way, the adaptive derivative bounds detector 128 may func-
tion as a “spike filter” An exemplary process of using an
adaptive derivative bounds detector to detect suspect data is
described in greater detail in reference to FIG. 3.

The suspect data detection module 120 may further include
a stuck data detector 130. The stuck data detector 130 deter-
mines if one or more data points are “stuck” at or near a
particular value. For example, if a sensor is not operating
correctly and is providing inaccurate data (e.g., the variance
between data points is unnaturally low), the stuck data detec-
tor 130 may determine that the data provided by the sensor are
‘stuck’ and therefore is suspect data. An exemplary process
using the stuck data detector 130 to detect suspect data is
described in greater detail in reference to FIG. 4.

The suspect data detection module 120 may further include
other detectors or modules for detecting suspect data. For
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example, the suspect data detection module 120 may include
adetector for detecting data that is not in a correct format, data
that meets type-specific errors, data that is not a number, or
otherwise inappropriate for a particular use.

The data cleansing module 140 is shown to include mod-
ules for changing or removing suspect data. For example, the
data cleansing module 140 is shown to include a data format-
ting module 146 and data sorting module 148. The data for-
matting module 146 may be configured to ensure that like
data is in the same correct format (e.g., all time-based vari-
ables are in the same terms of hours, days, minutes, etc.). The
data formatting module 146 may receive information about
the data from the suspect data detection module 120 regarding
the format of the data set, and may use the information in a
process to ensure that all data in the data set is in the correct
format (e.g., a format suitable for further processing). The
data sorting module 148 may be used to sort the data in the
data set for further analysis and for delivery to a BAS com-
puter system or other BAS component.

The data cleansing module 140 may further include an
interpolation module 142. The interpolation module 142 is
configured to replace a suspect data point in a data set via
interpolation of the data set. The interpolation may be linear
interpolation, quadratic interpolation, or any other type of
non-linear interpolation. For example, given a suspect data
point in a data set, interpolation may be used to change the
value of the suspect data point such that the new value of the
data point “fits” in a curve or graph of the other data points in
a data set or fills in a “gap” in the data set. Such a calculation
may allow the data point to have a minimal impact on various
calculations and processes that make use of the data set.

The data cleansing module 140 further includes a Not a
Number (NaN) module 144. The NaN module 144 is config-
ured to receive suspect data points in a data set from the
suspect data detection module 120 and to convert the suspect
data into a NaN format. By converting the suspect data into a
NaN format, calculations and processes of the BAS will
ignore the suspect data.

The type of cleansing or the cleansing module utilized can
depend on the type of error, the type of data, or the detector
which marked the data as suspect. The type of cleansing or
cleansing module used may also depend on the intended
future use of the data, the algorithm calling for the data (e.g.,
M&V, DR), or any other reason likely to favor one data
cleanser over another. The data cleansing module may be
selected automatically or may be user selected. For example,
data system 100 may prompt a user to select a data cleanser to
use with the suspect data when suspect data is detected.

Referring to FIG. 2, a flow chart 200 of a process for
suspect data detection is shown, according to an exemplary
embodiment. The process 200 uses an adaptive bounds pro-
cess to identify and flag suspect data. The parameters used
throughout the adaptive bounds process 200 can be set by the
data type, the algorithm type (e.g., the algorithm with which
the detector will be used), or user selected.

The process 200 includes specifying a window size and
critical value (Z value) (step 202). The window size relates to
the number of data points to use for the suspect data detection
process. The number of previous data points to use may be
determined automatically (e.g., a statistically significant
number of data points may need to be chosen in order for the
suspect data detection process to be accurate), may be deter-
mined by a user, or may simply be the total number of data
points available. The critical value may be a multiplier for
setting a threshold value or range for determining a minimum
bound and maximum bound for the suspect data detection
process.
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The process 200 further includes collecting data until the
data window is full (e.g., by randomly selecting data points,
by selecting the most recent data points, etc.) (step 204). The
process 200 then further includes calculating an estimate of
the data spread (o) and the central tendency (1) of the data in
the data window (step 206). The estimate of the data spread o
may be the range of the data (e.g., the difference between the
second highest value and second lowest value in a data set), a
value based on the variance or standard deviation of the data
set, or another value to describe a characteristic of the data
spread. The central tendency m of the data may be the mean of
the data set, median of the data set, mode of the data set, a
weighted average of the data set, another average of the data
set, or another value that describes the central tendency of the
data.

After calculating the data spread and central tendency, a
next data point (e.g., a data point X, , among data points X) is
selected for testing (step 208). The difference between the
selected next data point x,, ; and the central tendency 1) of the
data is calculated. The difference (1x,,,-nl) is then compared
to the estimate of the data spread multiplied by the critical
value (Zo) (step 210). Zo is representative of the maximum
difference that the data point should have compared to the
average or median of the values in the data set. If the differ-
ence is greater than Zo, the data is determined to be suspect
data (step 212).

The process 200 further includes removing the oldest data
point and adding a new data point to the window (step 214).
After the change, the process 200 then recalculates the esti-
mate of the data spread o and the central tendency m for the
new data window (step 206) and repeats the process for
another data point (steps 208-212).

Referring to FIG. 3, a flow chart of a process 300 for using
adaptive derivative bounds to identify and flag suspect data is
shown, according to an exemplary embodiment. The process
300 includes specifying a critical derivative and a growth
function (step 302). The critical derivative may be calculated,
specified as a parameter for the function, or chosen by a user.
The critical derivative represents a value for which the rate of
change between two or more data points should not exceed.
The derivative is a representation of the rate of change
between data points, and if the rate of change is too high, the
process 300 may determine the one or more data points used
in the function whose derivative is too high are suspect data
points. The growth function is a function used to increase or
decrease the critical derivative based on statistics applied to
the data. For example, the growth function may be applied as
a multiplier to the critical derivative. The multiplier may be
changed as described in reference to FIG. 6.

The process of FIG. 3 further includes collecting an initial
data point x, (step 304) and a second data point x,, (step 306).
The second data point may be the next data point in a data set
or may be one or more points removed from the initial data
point. Using the two data points, a rate of change is calculated
between the data points (step 308).

The absolute value of the rate of change is compared to the
critical derivative (step 310). If the absolute value of the rate
of change is greater than the critical derivative, the second
data point x,, is flagged as a suspect data point (step 312). At
every iteration of the data analysis loop, the growth function
may be used to increase (step 314) or decrease (step 316) the
value of the critical derivative (e.g., increasing the maximum
rate of change between data points that will be accepted by the
process of FIG. 3). For example, the growth function for
increasing the critical derivative (step 314) may include incre-
menting the multiplier applied to the critical derivative based
on current data trends. If the second data point is flagged as
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suspect data (step 312), the critical derivative is increased at
step 314. The growth function is described in greater detail
with reference to FIG. 6.

If'the rate of change between two data points is less than the
critical derivative, the second data point is accepted. The
growth function is then applied to the critical derivative in
order to decrease the critical derivative (step 316). For
example, the growth function for decreasing the critical
derivative may include decrementing the multiplier applied to
the critical derivative by a small amount.

Referring to FIG. 4, a flow chart 400 of a process for using
a stuck data detection process to detect suspect data is shown,
according to an exemplary embodiment. The stuck data
detection process 400 determines whether multiple consecu-
tive data points have stayed at a given value or within a margin
of a given value for a statistically significant amount of time.

The process 400 includes specifying a maximum false
alarm rate (step 402). The maximum false alarm rate may be
user set, predetermined based on the data type, predetermined
based on the time constant of the data, or otherwise set. The
maximum false alarm rate may be an allowed probability of a
false alarm ina given time frame (e.g., the allowed probability
of false alarms in one month). The maximum false alarm rate
is used by the process 400 to set a critical time, to compare
against a time since a change has occurred in values of the
data points. The specific usage of the maximum false alarm
rate is described in greater detail in reference to FIG. 7.

In some embodiments, the process 400 further includes
collecting an initial set of three data points to use for stuck
data detection (step 404). A larger set may be collected, in
varying alternative embodiments. The process 400 further
includes collecting the next data point to use for stuck data
detection (step 406).

The process 400 further includes computing a current noise
estimate (step 408). The current noise estimate may be used to
determine the effect of noise on the data points. For the first
iteration of the process 400, the current noise estimate may be
set to a default of zero. The current noise estimate may be
calculated based on the number of iterations completed in the
process 400 and the noise estimate determined in one or more
previous noise estimations. The current noise estimation pro-
cess includes calculating a residual variance and estimate of a
standard deviation of the data points being tested. The current
noise estimation process further includes using an exponen-
tially weighted moving average (EWMA) calculation to
smooth the current estimate of the standard deviation. This
smoothed estimate is used as the current noise estimate. Com-
puting a current noise estimate is described in greater detail
with reference to FIG. 9.

The process 400 further includes computing an average
time between changes and calculating a first critical time
based on the average time between changes (step 410). The
calculation of the first critical time may be accomplished
using an inverse F-distribution, as described in greater detail
in reference to FIG. 7. The first critical time is representative
of a period of time during which a change in data value is
expected. If there is no change in data value for a period of
time exceeding the first critical time, it may be determined
that the data points are faulty (e.g., the sensor providing the
data or communication between the sensor and BAS database
is stuck).

The computation of the average time between changes
includes counting the number of changes in data points in a
data set. Each time a next data point has a (significantly)
different value, a change is identified. Using the total number
of changes, and the length of time over which such changes
occurred, the average time between changes is determined.
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The average time between changes and the false alarm rate is
then used to determine the first critical time. The first critical
time is a period of time over which it is determined that the
signal or sensor is stuck if the values have not changed. The
calculation of the first critical time may be accomplished
using an inverse F-distribution. The exact process is shown in
greater detail in reference to FIG. 7.

The process 400 further includes computing an average
time between deviations from the noise band and calculating
a second critical time based on the average time between of
deviations from the noise band (step 412). The calculation of
the second critical time may be accomplished using an
inverse F-distribution. The second critical time is representa-
tive of a period of time for which a deviation in data value
from the noise band is expected. If there is no deviation from
the noise band for a period of time exceeding the second
critical time, it may be determined that the data points are
faulty. For example, if temperature data points indicate that
the temperature remains within a certain band (e.g., 1 degree)
for a period of time that exceeds the second critical time, it
may be determined that the data is faulty because temperature
values this consistent are not expected given the time frame
(e.g., a couple of days).

The computation of the average time between deviations
may include counting the number of such deviations. If a
change has occurred to a data point value in a data set in the
same direction as a previous data point value change (e.g., the
data point value increases or decreases again), a time variable
is increased that represents the amount of time since the last
change of direction. If a change has occurred to a data point in
an opposite direction, however, the time variable is reset and
the number of deviations is increased by one. In this way, data
that may have occurred after a setpoint change or from a load
disturbance does not skew the average time between changes
during steady-state control. In other words, data that changes
consecutive times in the same direction is not considered
when calculating the average time between changes. Using
the total number of deviations and the amount of time over
which such deviations occur, an average time between devia-
tions is calculated. The average time between deviations and
the false alarm rate are then used to determine the second
critical time. The second critical time indicates a period of
time over which it may be determined that the data is faulty if
the data values do not deviate from the noise band. The
calculation of the second critical time may be accomplished
using an inverse F-distribution, as shown in greater detail in
reference to FIG. 7.

The process 400 further includes determining if a change
of value occurred (step 414). A change in value may be any
change in value, no matter how small, or may be a significant
change in value (e.g., a deviation from the noise band). If a
change of value did occur, then the data point is not stuck and
the process repeats by collecting a new data point at step 406.

On the other hand, if a change of value did not occur, the
process 400 includes determining whether the time since the
last change of value is greater than either the first or second
critical time (step 416). If the time since the last change
exceeds either critical time, the data point is marked as sus-
pect (e.g., stuck) (step 418). In some embodiments, all of the
data points between the suspect data point and the most recent
previous change (either in value or in direction) may be
marked as suspect data as well since they too may be stuck.

If the time since the last change is still less than either
critical time, the process collects another data point at step
406 and again checks whether a change in value has occurred.
The process 400 continues this loop until a change has
occurred or one or both critical times have been exceeded.
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Referring now to FIGS. 5-9, exemplary sub-processes for
completing the various processes of the present disclosure is
shown. Referring more specifically to FIG. 5, a flow chart
illustrating a process 500 for checking a value relative to
minimum and maximum bounds is shown. In an exemplary
embodiment, the process 500 involves receiving a data point
X, in a data set (step 502) as well as minimum and maximum
bound information (step 504). For each data point x, in the
data set, the process 500 determines whether the data point x,.
has a value between the minimum bound and maximum
bound (step 506). If the value of the data point x, is out of
bounds, the process flags the data point x, as suspect data by
adding it to a suspect data array (step 508). The process 500
may be used with a static bounds process or with an adaptive
bounds process 200 as described in FIG. 2. For example, the
routine calling the process 500 may include data spread o and
central tendency m information for defining the bounds as
described in FIG. 2.

Referring to FIG. 6, a flowchart depicting an exemplary
embodiment of a growth process 600 is shown. The growth
process 600 may be used to recursively adjust the critical
derivative when implementing an adaptive derivative bounds
process, such as the process 300 shown in FIG. 3. The growth
process 600 may supplement or replace all or a portion of the
process 300 described in FIG. 3.

In an exemplary embodiment, the growth process 600
includes receiving a data set including multiple data points.
Each data point x, includes a data value data, and a data
timestamp time,. The growth process 600 also includes
receiving a minimum bound B,,,, on the critical derivative
(step 602). In the exemplary embodiment, the minimum
bound represents the smallest value that the critical derivative
is permitted to reach after being adjusted by the growth pro-
cess.

The process 600 includes receiving an initial data point x,,
from the data set (step 604) and a next data point x,,, (step
606). The process 600 further includes calculating the rate of
change from one data point in the data set to another data
point in the data set (step 608) by dividing the difference in
data values by the difference in data timestamps. For
example, the rate of change from data point x, to data point
X, 1s determined by calculating

datay, — daray

timey, — timey,

However, in other embodiments, the growth process 600 may
be used to calculate the rate of change between two non-
sequential data points. The growth process 600 then com-
pares the absolute value of the rate of change between two
data points to the critical derivative (step 610).

If'the absolute value of the rate of change between two data
points is less than the critical derivative, the growth process
600 reduces the critical derivative by a small amount (step
618). For the exemplary growth process 600 shown in FIG. 6,
this step is accomplished by decreasing the critical derivative
either (a) by one one-thousandth of the minimum bound B,,,,,,
or (b) to the minimum bound B,,,,,,, whichever would result in
a greater critical derivative value. Although the exemplary
embodiment reduces the critical derivative by one one-thou-
sandth of the minimum bound B,,,,, other embodiments may
reduce the critical derivative by a greater or lesser amount.

On the other hand, if the absolute value of the rate of
change between two data points is greater than or equal to the
critical derivative, the exemplary growth process 600 flags the

10

15

20

25

35

40

45

50

55

60

12

data point with the latter timestamp x,,, as suspect data by
adding the data point x,,, to a suspect data array (step 612).
After flagging the suspect data point, the process 600
increases the critical derivative by a value equal to the mini-
mum bound B, (step 614). Although the exemplary
embodiment increases the critical derivative by B,,,,,, other
embodiments may increase the critical derivative by a greater
or lesser amount.

In some embodiments, the growth process 600 may replace
a suspect data value with a value corresponding to the maxi-
mum increase or decrease prescribed by the critical derivative
and the difference in data timestamps between two data points
(step 616). For example, the difference between data times-
tamps (time,,,-time,) may be multiplied by the critical
derivative to determine the maximum possible change that
would not be flagged as suspect. The maximum non-suspect
change is then either (a) added to the first data value if data, , |
is greater than data, or (b) subtracted from the first data value
if data,, is less than data,. The resultant value is then substi-
tuted for data,,, to be used by the growth process 600 in
successive iterations involving the data set.

Referring now to FIGS. 7-9, sub-processes for completing
a stuck data detection process (e.g., the process 400 shown in
FIG. 4) are shown.

Referring specifically to FIG. 7, a flow chart of a process
700 used to determine parameters for the stuck data detection
process 400 is shown, according to an exemplary embodi-
ment. Specifically, the process 700 may be used to determine
an inverse F-distribution and calculate a first critical time for
use in the process 400. The first critical time is a time limit
over which it can be determined that a sensor is stuck if the
data values received from the sensor have not changed.

The process 700 may also be used to calculate a second
critical time based on another inverse F-distribution. The
second critical time is a time limit over which it can be
determined that a sensor is stuck if the data values received
from the sensor have not deviated from the noise band. The
process 700 may be implemented recursively upon receiving
each new data point or may be batch processed on a complete
set of data.

The process 700 includes receiving a data set comprising
multiple data points (step 702). Each data point x, includes a
data value data, and a data timestamp time,. The process 700
and step 702 also includes receiving a maximum false alarm
rate o (step 702). The maximum false alarm rate is used to
specify the allowed probability of a false alarm when process-
ing the data. For example, an a value of 0.05 would indicate
that the process 700 has a 5% chance to determine that the
data are stuck when in fact they are not stuck.

The process 700 and step 702 further includes receiving a
current noise estimation (e.g., from the process 900 of FIG. 9)
and counts information (e.g., from the process 800 of F1G. 8),
both described in greater detail below. The counts informa-
tion may include the number of times the data values have
changed and the time interval over which such changes have
occurred. The counts information may also include the num-
ber of times the data values have deviated from the noise band
and the time interval over which such deviations have
occurred. The process 700 and step 702 further includes
receiving a EWMA constant A as described in FIG. 4.

In some embodiments, the process 700 further includes
determining a first critical time (step 708) based on the aver-
age time between changes in data value (step 704) and an
inverse F-distribution (step 706). In the exemplary process,
the count information received from the process 800 of FI1G.
8 is used to determine the average time between changes in
data value. This quantity is determined by dividing the time
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over which changes in data value have occurred by the total
number of changes in data value. If no changes in data value
have occurred (e.g., the number of changes equals zero), then
the average time between changes is set to infinity. In some
embodiments, the average time between changes is then mul-
tiplied by the result of an inverse F function to determine the
first critical time.

The result of an inverse F function is defined in terms of
the of the cumulative distribution function (F) as x=F~" (plv,,
v,)={x:F(xIv,,v,)=p}, where

p=Fx|vl,v2)=
o Il

The process 700 includes using (1-c) as the x parameter, 2 as
the v, parameter, and twice the total number of changes in
data value as the v, parameter. However, other parameter
values could be used, depending on the application. The v,
and v, parameters represent the number of degrees of free-
dom in the numerator and denominator, respectively, of the
cumulative distribution function F.

The result of the inverse F function is a number value
signifying the upper limit of a confidence interval. For
example, F~1(0.95,5,10)=3.3258. This means that there exists
a 95% chance that any given value in the distribution will be
less than 3.3258. The purpose of the inverse F-distribution is
to determine the multiplier applied to the average time
between changes in determining the first critical time. There-
fore, continuing the previous example, the first critical time
would be 3.3258 times the average time between changes and
it would be 95% likely that a non-stuck sensor will record a
change in data value within the first critical time. From this
information, it can be concluded with 95% certainty that a
sensor is stuck if the data value has not changed within the
first critical time.

In some embodiments, the process 700 of FIG. 7 further
includes determining a second critical time (step 716) based
on the average time between deviations from the noise band
(step 712) and another inverse F-distribution (step 714).
However, because a significant number of data points are
required to obtain a useful estimate of the noise level, the
process of FIG. 7 may include checking the number of data
points on which the current estimate of the noise level is based
(step 710). If the number of data points used to determine the
current noise estimate is less than 1/A, then the second critical
time is not calculated (step 718).

Conversely, if the number of data points used to calculate
the current noise estimate exceeds 1/A, then the counts infor-
mation received from the process 800 of FIG. 8 and the
current estimation of the noise level are used to determine the
average time between deviations from the noise band (step
712). This quantity is determined by dividing the total time
over which deviations from the noise band have occurred by
the total number of such deviations. If no deviations from the
noise band have occurred (e.g., the number of deviations
equals zero), then the average time between deviations is set
to infinity. In some embodiments, the average time between
deviations is then multiplied by the result of another inverse F
function (step 714) to determine the second critical time (step
716). The second critical time signifies the time limit past
which it can be determined that a data sensor is stuck if the
data from the sensor have not deviated from the noise band.
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Referring to FIG. 8, a flow chart is shown depicting an
exemplary process 800 to determine the number of significant
changes in data value between data points in a data set and the
time interval over which such changes occur. The process 800
may be used by the processes 400 of FIG. 4 or 700 of FIG. 7
to determine the average time between changes. The process
800 includes receiving a first data point X, and another data
pointx, from a data source (step 802). Each data point pair has
a data value (data, , data,) and a data timestamp (time,,
time,). The process 800 and step 802 also includes receiving
a consecutive change threshold n. The process 800 includes
receiving a time since the last significant change in direction
and the number of consecutive changes in the same direction
(step 804).

The process 800 further includes receiving a data margin
(step 802) and determining whether the difference in data
value between two data points exceeds the data margin (step
806). The data margin is used to determine whether a change
in data value from one data point to the next is significant. The
data margin may be calculated automatically, received from
another process, specified by a user, or otherwise received
from any other source. If the difference between data values
meets or exceeds the data margin, the change is considered
significant. On the other hand, if the difference between data
values is less than the data margin, the change is considered
insignificant and consequently disregarded.

The process 800 further includes determining the direction
of'the change (if any) in data value between two second data
points (step 808). For example, if the value of data, is greater
than the value of data,, the direction of the change is positive.
Conversely, if the value of data, is less than the value of data,,
the direction of the change is negative.

The process 800 further includes adding the difference in
data timestamps to a variable quantity used to record the time
since the data last had a significant change in direction (step
810). In the exemplary embodiment, the value of this variable
starts at zero. However, the “time since last significant change
in direction” variable may be received by the process 800 as
a non-zero quantity if, for example, the data used by the
process 800 are the continuation of a previous data set or if the
process 800 is being run recursively.

The process 800 further includes receiving another data
point X, , having a data value data,, ;) and a data timestamp
time,, , (step 812) and determining whether the difference in
data value between the two most recent data points (data,, , -
data,) exceeds the data margin (step 814). In the exemplary
embodiment, if the difference in data values does not exceed
the data margin, the difference in data timestamps between
the two most recent data points (time,, ,—time,) is added to
the “time since last significant change in direction” variable.

Conversely, if the difference in data value between the two
most recent data points meets or exceeds the data margin, the
process 800 involves determining whether the change in data
value is in the same direction as the previous change (e.g.,
whether the data value increases again or decreases again)
(step 816).

If the change in data value is in the same direction as the
previous change, the process includes increasing a variable
quantity used to record the number of consecutive changes in
data value that have been in the same direction (step 818). In
the exemplary embodiment, the value of this variable starts at
zero. However, the “number of consecutive changes in the
same direction” variable may be received by the process 800
as a non-zero quantity if, for example, the data used by the
process are the continuation of a previous data set or if the
process 800 is being run recursively. Additionally, when a
change is in the same direction as the previous change, the
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exemplary process includes adding the difference in data
timestamps to the “time since last significant change in direc-
tion” variable.

If the change in data value is in the opposite direction from
the previous change, the exemplary process 800 includes
determining whether the number of previous consecutive
changes in the same direction is greater than a consecutive
change threshold n (step 820). In the exemplary embodiment,
the consecutive change threshold may be calculated auto-
matically, received from another process, specified by a user,
or otherwise received from any other source. The purpose of
the consecutive change threshold is to specity a number of
consecutive changes in the same direction past which it is
unlikely that the data would be indicative of steady-state
operation. In other words, if the number of consecutive
changes in the same direction exceeds the consecutive change
threshold, it is likely that the data is either increasing or
decreasing in response to a non-steady state event such as a set
point change or a load disturbance.

If the number of previous consecutive changes in the same
direction is greater than or equal to the consecutive change
threshold, the exemplary process 800 disregards the data
points representing such changes to avoid skewing the data
associated with steady-state control. The process 800 accom-
plishes this step by resetting the “number of consecutive
changes in the same direction” variable as well as the “time
since last significant change in direction” variable (step 822).
In the exemplary process, these two variables are reset with-
out adding their quantities to the total counts.

However, if the number of previous consecutive changes in
the same direction is less than the consecutive change thresh-
old, the exemplary process 800 includes adding the number of
previous consecutive changes in the same direction, as well as
the time interval over which such changes occurred, to the
total counts (step 824).

Total counts is an array including of (1) the number of
significant changes in data value determined by the process
800 and (2) the time over which such changes have occurred.
Counts are accumulated by transferring the balance of the
“number of consecutive changes in the same direction” vari-
able and the “time since last significant change in direction”
variable upon a change in data direction, provided that the
number of previous consecutive changes in the same direc-
tion does not exceed the consecutive change threshold. Total
counts may be used to determine some of the quantities used
by the process 700 of FIG. 7, such as average time between
changes.

Referring now to FIG. 9, a flowchart depicting the noise
estimation processes 900 used by FIG. 4 and FIG. 7 to com-
pute the current noise estimate is shown. Although the flow-
chart of FIG. 9 sets forth several discrete steps which may be
used to determine the current noise estimate, it is appreciated
that some of'the steps may be combined, broken into multiple
steps, rearranged, or otherwise reconfigured to accomplish
the same result. The process 900 may be used to estimate
noise in the environment in which data points are being mea-
sured or calculated. The process 900 includes receiving a first
data point x,_, and a second data point x, from a data source
(step 902). Each data point has a data value (data,_,,data,)
and a data timestamp (time;_, time;).

The process 900 further includes receiving a previous noise
estimate o, the number of iterations performed to calculate
the previous noise estimate, and an exponentially weighted
moving average (EWMA) constant A (step 902). The EWMA
constant functions to smooth the current noise estimate. A
low A value may be used when the expected error in the noise
estimate is low whereas a high A value may be used to provide
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greater adaptability when the expected error in the noise
estimate is high. The EWMA constant A may be calculated
automatically, received from another process, specified by a
user, or otherwise received from any other source. In the
exemplary embodiment, the previous noise estimate o,,,,and
the number of iterations start at zero. However, both variables
may be received by the process as non-zero quantities if, for
example, the data used by the process are the continuation of
a previous data set or if the process is being implemented
recursively.

The process 900 further includes receiving a next data
point X, , from the data set (step 904). The next data point
also has a data value data,,, and a data timestamp time,, ;.
Using the three most recently received data points, a times-
tamp matrix [T] is created (step 906). In the exemplary
embodiment, the timestamp matrix is a three by two matrix.
As shown in FIG. 9, the first column of the timestamp matrix
contains all ones whereas the second column of the times-
tamp matrix contains the values (time,_,-time,), 0 , and
(time,,, ,-time,) descending from top to bottom.

The process 900 further includes creating a regression data
matrix [R] (step 908). The regression data matrix is created by
(1) taking the transpose of the timestamp matrix [T]” and
multiplying such transpose by the timestamp matrix itselfand
(2) multiplying the inverse matrix of the resultant product by
the transpose of the timestamp matrix. In other words,
[R]=inverse([ T]™*[T])*[T]” as shown in FIG. 9.

The process 900 further includes estimating the value of
data, (data,z.7) based on the regression data matrix and the
three by one array of data values data,_,, data,, and data,,
descending from top to bottom (step 910). The value of data, -
estis determined by multiplying the top row of the regression
data matrix by the array of data values as shown in FIG. 9.

The process 900 further includes determining the residual
variance (var) by subtracting the value in the first row and
second column of the regression data matrix R(1,2) from the
integer 1 (step 912). In other words, var=1-R(1,2).

Once the residual variance has been calculated, an estimate
of the current standard deviation o, can be determined by
multiplying the square root of the quantity [ divided by twice
the variance] by the absolute value of the difference between
the estimated value data, .-and the actual value of data, (step
914). In other words,

Tor = * |datay, — dataygsr|.

n
2 % var

Finally, the process 900 includes determining the current
noise estimate. As shown in FI1G. 9, if the value ofthe variable
recording the number of iterations is greater than 1/A then the
current noise estimate is updated by adding the product of
(1/1) and the previous noise estimate to the product of A and
the current standard deviation o, (step 916). Otherwise, the
current noise estimate is determined by (1) multiplying the
previous noise estimate o,,; by the variable recording the
number of iterations, (2) adding the resultant product to the
current standard deviation 0,,,,,, and (3) dividing the resultant
sum by one plus the number of iterations (step 918). Once the
current noise estimate has been determined, the variable
recording the number of iterations is increased by one (step
920).

Using the systems and methods disclosed above, data sys-
tem 100 is able to automatically detect suspect data and
automatically cleanse the suspect data. In some embodi-
ments, data system 100 may indicate instances of suspect data
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detected by suspect data detection module 120 to a user or
user device (e.g., mobile phone, laptop computer, client com-
puter, user interface server, etc.) prior to cleansing the suspect
data using data cleansing module 140. The user may be able
to choose which data cleanser to use with the suspect data and
may elect whether to cleanse the data and/or whether to retain
some or all of the raw suspect data. Data system 100 may
indicate all instances of suspect data to the user or may indi-
cate only certain instances of suspect data which exceed a
fault indication threshold. The fault indication threshold may
relate to a magnitude of a fault in the suspect data (e.g., the
amount by which the data exceed acceptable bounds), may
relate to a quantity (e.g., number, percentage, proportion,
etc.) of suspect data points in a data set, or may relate to
whether or not a pattern has developed (e.g., whether the
number of faults or magnitude of such faults has grown). The
fault indication threshold may be specified by a user, or may
be determined automatically by the data system 100.

In some embodiments, data system 100 may replace sus-
pect data in a data set with cleansed data. Prior to cleansing,
data system 100 may create a copy of some or all of the
suspect data to allow for user inspection or selection of the
original raw data. In other embodiments, data system 100
may use the raw data to create a separate set of cleansed data
without altering or replacing any of the raw data in the raw
data set. Thus, both the raw data and the cleansed data may be
available for use in downstream processes or applications.

In an exemplary embodiment, the system may generate
user interfaces for allowing the user to view statistics regard-
ing the data fault detection and cleansing. For example, the
user interfaces may include tallies indicating the percentage
of'the data which is potentially suspect, the percentage of the
data which was replaced due to error detection and cleansing,
the number of total detected faults, or other totals for allowing
the user to conduct his or her own evaluation of the quality of
the data. The user interface generated by the system may
include controls for allowing the user to select between dif-
ferent cleansing methods or may include controls for allow-
ing the user to change thresholds ofthe system (e.g., to reduce
the number of false positives). In the same or yet other
embodiments, the user interfaces can include controls for
allowing the user to set alert or alarming thresholds. In other
words, the user may be able to adjust how frequently or upon
which circumstances the system messages the user regarding
detected and cleansed faults. The user may decide that he or
she does not want to receive frequent messages regarding
routine or normal fault detection and cleansing, but that he or
she would like to be notified when faults exceed a certain
“problem” threshold. The user interfaces may include con-
trols for allowing the user to investigate the data behind the
detected and cleansed faults. In other words, the user inter-
faces may allow the user to view which machine or subsystem
generated the faults, view data adjacent to the detected faulty
data, or to otherwise view raw or compiled information
regarding the faulty or potentially faulty data.

The construction and arrangement of the systems and
methods as shown in the various exemplary embodiments are
illustrative only. Although only a few embodiments have been
described in detail in this disclosure, many modifications are
possible (e.g., variations in sizes, dimensions, structures,
shapes and proportions of the various elements, values of
parameters, mounting arrangements, use of materials, colors,
orientations, etc.). For example, the position of elements may
be reversed or otherwise varied and the nature or number of
discrete elements or positions may be altered or varied.
Accordingly, all such modifications are intended to be
included within the scope of the present disclosure. The order
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or sequence of any process or method steps may be varied or
re-sequenced according to alternative embodiments. Other
substitutions, modifications, changes, and omissions may be
made in the design, operating conditions and arrangement of
the exemplary embodiments without departing from the
scope of the present disclosure.

The present disclosure contemplates methods, systems and
program products on any machine-readable media foraccom-
plishing various operations. The embodiments of the present
disclosure may be implemented using existing computer pro-
cessors, or by a special purpose computer processor for an
appropriate system, incorporated for this or another purpose,
or by a hardwired system. Embodiments within the scope of
the present disclosure include program products comprising
machine-readable media for carrying or having machine-ex-
ecutable instructions or data structures stored thereon. Such
machine-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
or other machine with a processor. By way of example, such
machine-readable media can comprise RAM, ROM,
EPROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to carry or store desired
program code in the form of machine-executable instructions
or data structures and which can be accessed by a general
purpose or special purpose computer or other machine with a
processor. Thus, any such connection is properly termed a
machine-readable medium. Combinations of the above are
also included within the scope of machine-readable media.
Machine-executable instructions include, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing machines to perform a certain function or group of func-
tions.

Although the figures may show a specific order of method
steps, the order of the steps may differ from what is depicted.
Also two or more steps may be performed concurrently or
with partial concurrence. Such variation will depend on the
software and hardware systems chosen and on designer
choice. All such variations are within the scope of the disclo-
sure. Likewise, software implementations could be accom-
plished with standard programming techniques with rule
based logic and other logic to accomplish the various connec-
tion steps, processing steps, comparison steps and decision
steps.

We claim:

1. A method for detecting and cleansing suspect building
automation system data, comprising:

using processing electronics to automatically determine

which of a plurality of error detectors and which of a
plurality of data cleansers to use with building automa-
tion system data;
using the processing electronics to automatically detect
errors in the data and cleanse the data using a subset of
the error detectors and a subset of the cleansers;

wherein the processing electronics automatically deter-
mine which of the plurality of data cleansers to use with
the building automation system data prior to cleansing
the data;

flagging a data point as suspect data if an absolute value of

a rate of change in data value between the data point and
aprevious data point is greater than a critical derivative;
and

using a growth function to either:

(a) increase the critical derivative if the absolute value of
the rate of change in data value between the data
points is greater than the critical derivative, or
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(b) decrease the critical derivative if the absolute value of
the rate of change in data value between the data
points is less than or equal to the critical derivative.

2. The method of claim 1, wherein the processing electron-
ics use an indication of data type to determine which of the
error detectors or which of the data cleansers to use with the
data.

3. The method of claim 1, wherein the processing electron-
ics use information concerning how the data will be used in
subsequent processing to determine which of the error detec-
tors or which of the data cleansers to use with the data.

4. The method of claim 1, wherein the processing electron-
ics use information concerning which of the error detectors is
used with the data or the type of error determined by the
detectors to determine which of the data cleansers to use with
the data.

5. The method of claim 1, further comprising:

using the processing electronics to generate a message for

transmission to a user, wherein the message for trans-

mission to the user indicates the presence of a detected
error and the type of the detected error.

6. The method of claim 1, wherein the plurality of cleansers
comprise at least two of:

(a) a module that replaces the suspect data with a not-a-

number value;

(b) a module that replaces the suspect data with a value

determined by interpolation;

(c) amodule that formats the data to a uniform format; and

(d) a module that sorts the data.

7. The method of claim 1, wherein the plurality of error
detectors comprise at least three of:

(a) a static bounds error detector;

(b) an adaptive bounds error detector;

(c) a static derivative bounds error detector;

(d) an adaptive derivative bounds error detector; and

(e) a stuck value error detector.

8. The method of claim 7, wherein the static bounds error
detector uses a process comprising:

receiving a data point having a data value;

receiving a minimum and maximum bound information;

and

flagging the data point as suspect data if the data value is

not within the minimum and maximum bounds.

9. The method of claim 7, wherein the adaptive bounds
error detector uses a process comprising:

receiving a critical value and a data window having a win-

dow size;

receiving data points until the number of data points col-

lected equals the window size;

estimating a data spread and a central tendency for the data

points in the current data window;

receiving a next data point having a data value; and

flagging the next data point as suspect data if the absolute

value of the difference between the data value and the
central tendency is greater than the product of the critical
value and the data spread.

10. The method of claim 7, wherein the static derivative
bounds error detector uses a process comprising:

receiving a critical derivative, an initial data point and a

next data point, each data point having a data value and

a data timestamp;

determining a rate of change in data value between the

initial data point and the next data point; and

flagging the next data point as suspect data if the rate of

change is greater than the critical derivative.

11. The method of claim 7, wherein the adaptive derivative
bounds error detector uses a process comprising:
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receiving a critical derivative and a growth function;
collecting an initial data point having an initial data value
and an initial data timestamp and a next data point hav-
ing a next data value and a next data timestamp;
determining the rate of change in data value between the
data points by dividing the difference in data values by
the difference in data timestamps;
flagging the next data point as suspect data if the absolute
value of the rate of change in data value between the data
points is greater than the critical derivative; and
using the growth function to either
(a) increase the critical derivative if the absolute value of
the rate of change in data value between the data
points is greater than the critical derivative, or
(b) decrease the critical derivative if the absolute value of
the rate of change in data value between the data
points is less than or equal to the critical derivative.
12. The method of claim 7, wherein the stuck value error
detector uses a process comprising:
receiving a maximum false alarm rate and a plurality of
data points, each data point having a data value and a
data timestamp;
determining an average time between changes in data
value;
determining a first critical time based on the average time
between changes and the maximum false alarm rate;
receiving a next data point having a next data value and a
next data timestamp;
determining a difference between the next data timestamp
and the timestamp of the most recent previous data point
in the plurality of data points with a data value different
from the next data value; and
flagging the next data point as stuck if the difference
between the next data timestamp and the timestamp of
the most recent previous data point with a data value
different from the next data value is greater than the first
critical time.
13. The method of claim 12, wherein the stuck value error
detector uses a process further comprising:
determining a current noise estimate and using the current
noise estimate to calculate a noise band;
determining an average time between deviations from the
noise band;
determining a second critical time based on the average
time between deviations from the noise band and the
maximum false alarm rate;
determining a difference between the next data timestamp
and the timestamp of the most recent previous data point
in the plurality of data points with a data value signifi-
cantly different from the next data value; and
flagging the next data point as stuck if the difference
between the next data timestamp and the timestamp of
the most recent previous data point with a data value
significantly different from the next data value is greater
than the second critical time, wherein a difference in
data value between two data points is significantly dif-
ferent if the difference represents a deviation from the
noise band.
14. A computerized method for detecting suspect building
automation system data, the method comprising:
receiving, at a processing circuit of an adaptive bounds
error detector, a critical value and a data window having
a window size;
collecting, at the processing circuit, data points until the
number of data points collected equals the window size;
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using robust statistics to estimate, by the processing circuit,
data spread and central tendency in the current data
window;

collecting a next data point having a data value;

determining, by the processing circuit, whether the abso-
lute value of the difference between the data value and
the central tendency is greater than the product of the
critical value and the data spread;

flagging, by the processing circuit, the next data point as
suspect data in response to a determination that the abso-
lute value of the difference between the data value and
the central tendency is greater than the product of the
critical value and the data spread;

replacing an oldest of the collected data points with the
next data point to define a new data window;

calculating an updated critical value, an updated data
spread, and an updated central tendency in the new data
window;

repeating the steps of ‘collecting a next data point,” ‘deter-
mining,” and ‘flagging’ using the updated critical value,
the updated data spread, the updated central tendency,
and the newly-collected next data point;

flagging, by the processing circuit, the next data point as
suspect data if an absolute value of a rate of change in
data value between the next data point and a previous
data point is greater than a critical derivative; and

using a growth function to either:

(a) increase the critical derivative if the absolute value of
the rate of change in data value between the data
points is greater than the critical derivative, or

(b) decrease the critical derivative if the absolute value of
the rate of change in data value between the data
points is less than or equal to the critical derivative.

15. A computerized method for detecting suspect building

automation system data, the method comprising:

receiving, at a processing circuit of an adaptive derivative
bounds error detector, a critical derivative and a growth
function;

collecting, at the processing circuit, an initial data point
having an initial data value and an initial data timestamp
and a next data point having a next data value and a next
data timestamp;

determining, by the processing circuit, the rate of change in
data value between the data points by dividing the dif-
ference in data values by the difference in data times-
tamps,

flagging, by the processing circuit, the next data point as
suspect data if the absolute value of the rate of change in
data value between the data points is greater than the
critical derivative; and

the processing circuit using the growth function to either

(a) increase the critical derivative if the absolute value of
the rate of change in data value between the data
points is greater than the critical derivative, or

(b) decrease the critical derivative if the absolute value of
the rate of change in data value between the data
points is less than or equal to the critical derivative.

16. A computerized method for detecting suspect building

automation system data, the method comprising:

receiving, at a processing circuit of a stuck data detector, a
maximum false alarm rate and a plurality of data points,
each data pointhaving a data value and a data timestamp;

determining, by the processing circuit, an average time
between changes in data value;

determining, by the processing circuit, a first critical time
based on the average time between changes and the
maximum false alarm rate;
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receiving, at the processing circuit, a next data point having
a next data value and a next data timestamp;

determining, by the processing circuit, whether the differ-
ence between the next data timestamp and the timestamp
of the most recent previous data point with a data value
different from the next data value is greater than the first
critical time;

flagging, by the processing circuit, the next data point as
stuck in response to a determination that the difference
between the next data timestamp and the timestamp of
the most recent previous data point with a data value
different from the next data value is greater than the first
critical time;

flagging, by the processing circuit, the next data point as
suspect data if the absolute value of a rate of change in
data value between the next data point and a previous
data point is greater than a critical derivative; and

using the growth function to either:

(a) increase the critical derivative if the absolute value of
the rate of change in data value between the data
points is greater than the critical derivative, or

(b) decrease the critical derivative if the absolute value of
the rate of change in data value between the data
points is less than or equal to the critical derivative.

17. The method of claim 16, further comprising:

determining a current noise estimate and using the current
noise estimate to calculate a noise band;

determining an average time between deviations from the
noise band; determining a second critical time based on
the average time between deviations from the noise band
and the maximum false alarm rate; and

flagging the next data point as stuck if the difference
between the next data timestamp and the timestamp of
the most recent previous data point with a data value
significantly different from the next data value is greater
than the second critical time, wherein a difference in
data value between two data points is deemed signifi-
cantly different if the difference represents a deviation
from the noise band.

18. The method of claim 17, wherein the first critical time

is determined using a process comprising:

receiving counts information and the maximum false alarm
rate, wherein the counts information includes a total
number of changes in data value and a total time over
which such changes occurred;

determining the average time between changes in data
value by dividing the total time over which such changes
occurred by the total number of changes in data value;

using the maximum false alarm rate and the total number of
changes in data value to calculate the result of an inverse

F-function; and

determining the first critical time by multiplying the aver-
age time between changes in data value by the result of
the inverse F-function.

19. The method of claim 17, wherein the second critical

time is determined using a process comprising:

receiving counts information and the maximum false alarm
rate, wherein the counts information includes a total
number of deviations from the noise band and a total
time over which such deviations occurred;

determining the average time between deviations from the
noise band by dividing the total time over which such
deviations occurred by the total number of deviations
from the noise band;

using the maximum false alarm rate and the total number of
deviations from the noise band to calculate the result of
another inverse F-function; and
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determining the second critical time by multiplying the
average time between deviations from the noise band by
the result of the other inverse F-function.

20. The method of claim 17, wherein the current noise

estimate is determined using a process comprising:

receiving a previous noise estimate, a number of iterations
used to calculate the previous noise estimate, an expo-
nentially weighted moving average (EWMA) constant,
and the plurality of data points, each data point having a
data value and a data timestamp;

estimating the value of a data point using regression data,
wherein the regression data is created using the data
timestamps;

calculating a residual variance using the regression data;

using the residual variance and the estimated data value to
estimate a current standard deviation; and

using the previous noise estimate, the number of iterations
used to calculate the previous noise estimate, the
EWMA constant, and the current standard deviation to
determine the current noise estimate.
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